#### Beyond the Van der Waals EoS of hadronic matter

#### O. Ivanytskyi

Bogolyubov Institute for Theoretical Physics, Kyiv, Ukraine

#### (with V. Sagun, K. Bugaev, E. Nikonov, A. Taranenko and G. M. Zinovjev)

arXiv:1704.06846 [nucl-th] Nucl. Phys. A 924, 24 (2014)

Dubna, 11 July 2017

#### Outline



O. Ivanytskyi Bogolyubov Institute for Theoretical Physics, Kyiv, Beyond the Van der Waals EoS of hadronic matter

æ

< A

### Outline





O. Ivanytskyi Bogolyubov Institute for Theoretical Physics, Kyiv, Beyond the Van der Waals EoS of hadronic matter

э









O. Ivanytskyi Bogolyubov Institute for Theoretical Physics, Kyiv, Beyond the Van der Waals EoS of hadronic matter

э

#### Strongly interacting matter phase diagram



- Constrains on EoS come from several regions of phase diagram
- Wide applicability range of EoS is required
- Practical need to go beyond the standard approximations -

## Constrains on hadronic EoS

- Many particle species  $\Rightarrow$  Grand Canonical Ensemble
- Properties of symmetric nuclear matter at ground state

 $T=0, n_0=0.16 \ fm^{-3} \Rightarrow rac{E_{binding}}{A}=16 \ MeV, \ p=0$ 

- Causality up to the densities where QGP is expected  $c_s = \sqrt{\frac{dp}{d\epsilon}} \leq 1 \ \Rightarrow \text{EoS is not too stiff}$
- Flow constrain on the strongly interacting matter EoS
   P. Danielewicz, R. Lacey, W. G. Lynch, Science 298, 1593 (2002)
- Hard core radii of hadrons
  - nucleon-nucleon scattering data  $\Rightarrow$  R  $\simeq$  0.3 fm

A. Bohr, B. Mottelson, Nucl. Structure (Benjamin, NY 1969), V.1, p. 266.

• hadron production in A+A collisions  $\Rightarrow$   $R \lessapprox 0.5$  fm

A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006) V. V. Sagun, Ukr. J. Phys. 59, 755 (2014) V. Vovchenko, H. Stoceker, J.Phys. Conf. Ser. 779 (2017)

• Low temperature thermodynamics of lattice QCD A. Bazavov et al., Phys. Rev. D 95, 054504 (2017)

O. Ivanytskyi Bogolyubov Institute for Theoretical Physics, Kyiv,



yiv, Beyond the Van der Waals EoS of hadronic matter

# Ingredients of phenomenological EoS

Realistic interaction

#### short range repulsion:

- 1. finite size of particles
- 2. exchange interaction via repulsive channels (not significant at T > 50 MeV)

#### long range attraction:

1. exchange interaction via attractive channels (suppressed at T > 50 MeV)



- 3. Finite size of particles  $\Rightarrow$  hard core repulsion
- 4. Exchange interaction  $\Rightarrow$  1. microscopic  $\mathcal{L}$  in mean-field approximation
  - 2. thermodynamically consistent potentials
- Quantum statistics (obvious but not always trivial)
- Many particle species

## Hadronic hard core

• Prevents phenomenological EoS of QCD from quark confinement at high temperatures

```
ideal gas : p \sim T^4
hard core : p \sim T
```

- Accounts for short range repulsion between the constituents (hadrons, nuclear fragments, etc.)
- Is necessary for statistical (not Van der Waals) liquid-gas phase transition in cluster models



## Hadronic hard core

• Prevents phenomenological EoS of QCD from quark confinement at high temperatures

```
ideal gas : p \sim T^4
hard core : p \sim T
```

- Accounts for short range repulsion between the constituents (hadrons, nuclear fragments, etc.)
- Is necessary for statistical (not Van der Waals) liquid-gas phase transition in cluster models



## Hadronic hard core

• Prevents phenomenological EoS of QCD from quark confinement at high temperatures

```
ideal gas : p \sim T^4
hard core : p \sim T
```

- Accounts for short range repulsion between the constituents (hadrons, nuclear fragments, etc.)
- Is necessary for statistical (not Van der Waals) liquid-gas phase transition in cluster models



#### Hadronic hard core repulsion in heavy ion collisions

• Important element in description of particle yields

Ideal hadron gas is proven to be inadequate at high A+A collision energies

- J. Cleymans and H. Satz, Z. Phys. C 57, 135 (1993)
- J. Cleymans, M.I.Gorenstein, J. Stalnacke and E.Suhonen, Phys. Scripta 48, 277 (1993)

#### Models with exact analytical solution in finite volume (not in this talk)

K. A. Bugaev, Acta. Phys. Polon. B 36, 3083 (2005) K. A. Bugaev, A. I. Ivanytskyi, V. V. Sagun and D. R. Oliinychenko, PEPAN 10, 6, 508 (2013)

- · analogs of phase transition and critical point in finite volume
- charge fluctuations in finite volume

#### EoS with constant excluded volume

• EoS with constant excluded volume b

$$p = \sum_{particles} p_{id}(\mu) \implies p = \sum_{particles} p_{id}(\mu - pb)$$

D.H. Rischke, M.I. Gorenstein, H.Stoecker and W. Greiner, Z. Phys. C 51(1991) 485

• Example: onecomponent Van der Waals EoS ( $b = 4v_0$ ,  $v_0$  - volume of hard sphere) ideal ras

$$V \to V - V_{excl} \Rightarrow p = nT = \frac{NT}{V} \to \frac{NT}{V - V_{excl}} = \frac{NT}{V - Nb} = \frac{nT}{1 - nb}$$

$$n = \frac{\partial p}{\partial \mu} = \frac{p}{T + pb} \quad \Rightarrow \quad p = \underbrace{T \int \frac{d\vec{k}}{(2\pi)^3} \exp\left(\frac{\mu - pb - \sqrt{m^2 + k^2}}{T}\right)}_{p_{id}(\mu - pb)}$$

#### Whether excluded volume is constant?

# Excluded volume

• Excluded volume per particle

$$v_{excl} \equiv \frac{V_{excl}}{N}$$
, where N is number of particles

• Translation of one particle around another



 $v_{excl} \simeq \frac{1}{2} \cdot \frac{4\pi}{3} (2R)^3 = 4v_0$   $v_{excl} \simeq v_0$ 

What is dependence of  $v_{excl}$  on density?

How v<sub>excl</sub> enters EoS?

1

### Virial expansion of EoS with hard core repulsion

• Low density expansion of one component EoS (valid, when  $n \simeq n_{ideal gas}$ )

$$\frac{p}{T} = n + a_2 n^2 + a_3 n^3 + a_4 n^3 + \dots$$

• Virial coefficients  $a_k$  are defined by the potential of microscopic interaction **R.K.Pathria, Statistical Mechanics, Pergamon Press, Oxford, 1972** Boltzmann ideal gas:  $a_2 = 0$ ,  $a_3 = 0$ ,  $a_4 = 0$ , ... Boltzmann hard spheres:  $a_2 = 4v_0$ ,  $a_3 = 10v_0^2$ ,  $a_4 = 18.365v_0^3$ , ...

Have to be reproduced within realistic phenomenological EoS ..., but it is not trivial if:

- effects of quantum statistics are accounted
- many particle species are included
- Carnahan-Starling EoS for hard spheres

$$\frac{p}{nT} = \frac{1 + nv_0 + (nv_0)^2 - (nv_0)^3}{(1 - nv_0)^3}$$

- 7 first virial coefficients are reproduced
- recent generalization to quantum case
   D. Anchishkin and V. Vovchenko, J. Phys. G 42, 105102 (2015)
- NO generalization to many particle species

## Mixture of many Boltzmann particle species

$$\frac{p}{T} = n + a_2 n^2 + a_3 n^3 + a_4 n^3 + \dots$$

• Excluded volume for different particle species at low density

 $v_{excl}^{ij} = \frac{1}{2} \cdot \frac{4\pi}{3} (R_i + R_j)^3$  – matrix of second virial coefficients

• Quantitites of the Boltzmann ideal gas

$$p = nT$$
,  $n = \sum_{i} n_i^{id}$ ,  $n_i^{id} = g_i \int \frac{d\vec{k}}{(2\pi)^3} \exp\left(\frac{\mu_i - \sqrt{m_i^2 + k^2}}{T}\right)$ 

• Virial expansion for many particle species with  $v_i = \frac{4\pi}{3}R_i^3$  and  $s_i = 4\pi R_i^2$ 

$$\frac{p}{T} = \overbrace{\sum_{i}^{j} n^{id}}^{\simeq n} - \overbrace{\sum_{i,j}^{j} v_{excl}^{ij} n_{i}^{id} n_{j}^{id}}^{\simeq a_{2}n^{2}} + \dots = \sum_{i}^{j} n_{i}^{id} \left(1 - \overbrace{v_{i} \sum_{j}^{j} n_{j}^{id}}^{\text{bulk term}} - \overbrace{s_{i} \sum_{j}^{j} n_{j}^{id} R_{j}}^{\text{surface term}}\right) + \dots$$



#### Boltzmann EoS with induced surface tension

$$\frac{p}{T} = \sum_{i} n_{i}^{id} \left( 1 - \overbrace{v_{i} \sum_{j} n_{j}^{id}}^{bulk \ term} - \overbrace{s_{i} \sum_{j} n_{j}^{id} R_{j}}^{surface \ term} \right) + \dots$$

- Bulk term first order of **pressure**  $\frac{p}{T} = \sum_{i} n_{i}^{id} + O(n^{2})$
- Surface term first order of surface tension  $\frac{\Sigma}{T} = \sum_{i} n_i^{id} R_i + O(n^2)$
- High density extrapolation (gives exponentials)

$$\begin{cases} \frac{p}{T} = \sum_{i} n_{i}^{id} \left( 1 - \frac{pv_{i}}{T} - \frac{\Sigma s_{i}}{T} \right) \\ \frac{\Sigma}{T} = \sum_{i} n_{i}^{id} \left( 1 - \frac{pv_{i}}{T} - \frac{\alpha \Sigma s_{i}}{T} \right) R_{i} \end{cases} \Rightarrow \begin{cases} \frac{p}{T} = \sum_{i} n_{i}^{id} \exp\left(-\frac{pv_{i} + \Sigma s_{i}}{T}\right) \\ \frac{\Sigma}{T} = \sum_{i} n_{i}^{id} \exp\left(-\frac{pv_{i} + \alpha \Sigma s_{i}}{T}\right) R_{i} \end{cases}$$

 $\alpha>1$  accounts for not uniqueness of extrapolation to high densities V.Sagun, A.Ivanytskyi, K. Bugaev, I. Mishustin, Nucl. Phys. A 924, 24 (2014)

#### Excluded volume in one component Boltzmann EoS

Equation of State

$$\begin{pmatrix} \frac{p}{T} = n^{id} \exp\left(-\frac{pv_0 + \Sigma s_0}{T}\right) \\ \frac{\Sigma}{T} = n^{id} \exp\left(-\frac{pv_0 + \alpha \Sigma s_0}{T}\right) R \Rightarrow \frac{p}{T} = n^{id} \exp\left(-\frac{pv_0\left(1 + 3e^{\frac{(1-\alpha)\Sigma s}{T}}\right)}{T}\right)$$

Variat

• Excluded volume per particle

$$v_{excl} = v_0 \left( 1 + 3e^{\frac{(1-\alpha)\Sigma s}{T}} \right) \rightarrow \begin{cases} 4v_0, \ \Sigma \to 0\\ v_0, \ \Sigma \to \infty \end{cases}$$



#### $\alpha > 1$ switches excluded volume regimes

### Virial expansion of one component Boltzmann EoS

• Virial expansion of one component EoS with induced surface tension

$$p = nT \left[ 1 + \overbrace{4v_0}^{a_2} n + \overbrace{\left(16 - 18(\alpha - 1)\right)v_0^2}^{a_3} n^2 + \underbrace{\left(64 - 216(\alpha - 1) + \frac{243}{2}(\alpha - 1)^2\right)v_0^3}_{a_4} n^3 \right] + \mathcal{O}(n^5)$$

- Second virial coefficient of hard spheres  $a_2 = 4v_0$  is reproduced always
- Third virial coefficient of hard spheres  $a_3 = 10v_0^2 \Rightarrow \alpha = \frac{4}{3}$  $a_4$  - not reproduced

• Fourth virial coefficient of hard spheres  $a_4 \simeq 18.365 v_0^3 \Rightarrow \alpha \simeq 1.245$  $a_3$  – reproduced with 16% accuracy

#### One parameter reproduces two (3rd and 4th) virial coefficients and allows generalization to multicomponent case

#### Causality of IST EoS at very extreme cases

• Mixture of baryons (N and  $\Delta$ ) and pions



• The widest causality interval (up to 7 normal nuclear densities) at  $\alpha = 1.25$ 

#### Virial expansion and causality analysis give the same value of $\alpha$

## Mean filed potential

• External mean filed  $\Rightarrow$  medium dependent contribution U to one particle energy

$$\sqrt{m^2 + k^2} \to \sqrt{m^2 + k^2} + U$$

Contribution of particle of sort i to p:

$$p_i^{id}(\mu_i - pv_i - \Sigma s_i) \rightarrow p_i^{id}(\mu_i - pv_i - \Sigma s_i - U(n_i^{id})) + p_{int}(n_i^{id})$$
 in expression for  $p$ 

$$p_i^{id}(\mu_i - pv_i - \alpha \Sigma s_i) \rightarrow p_i^{id}(\mu_i - pv_i - \alpha \Sigma s_i - U(n_i^{id})) + p_{int}(n_i^{id})$$
 in expression for  $\Sigma$ 

• Thermodynamic consistency (p and  $\Sigma$  can not depend on  $\mu$  and n simultaneously)

$$n\frac{\partial U(n)}{\partial n} = \frac{\partial p_{int}(n)}{\partial n} \Rightarrow$$
 thermodynamic identity  $n = \frac{\partial p}{\partial \mu}$  is respected

K. A. Bugaev and M. I. Gorenstein, Z. Phys. C 43, 261 (1989)

## EoS with Induced Surface Tension

$$\begin{cases} p = \sum_{i} \left[ p_{i}^{id} \left( T, \mu_{i} - U(n_{i}^{id}) - pv_{i} - \Sigma s_{i} \right) + p_{int}(n_{i}^{id}) \right] \\ \Sigma = \sum_{i} \left[ p_{i}^{id} \left( T, \mu_{i} - U(n_{i}^{id}) - pv_{i} - \alpha \Sigma s_{i} \right) + p_{int}(n_{i}^{id}) \right] R_{i} \end{cases}$$

- Many sorts of particles
- Quantum statistics is accounted by construction of  $p^{id}$  and  $n^{id}$
- **Realistic interaction**: hard core repulsion between particles

mean-field potential U

- Virial coefficients are reproduced
- Causal behavior up to densities where QGP is expected

#### Generalized Walecka model for nuclear matter

$$\mathcal{L} = \mathcal{L}_{N} + \mathcal{L}_{\sigma} + \mathcal{L}_{\omega} + \overline{N}(g_{\sigma}\sigma - g_{\omega}\psi)N$$

- Additional mean filed attraction  $U(n) = -C_d^2 \sqrt{n}$
- Hard core repulsion is accounted within the IST framework
- EoS in mean field approximation (point like mesons)

$$p = p^{id} \left( \mu^* - U(n^{id}) - pv_0 - \Sigma s_0 \right) + p_{int}(n^{id}) - \frac{m_{\sigma}^2 \sigma^2}{2} + \frac{m_{\omega}^2 \omega^2}{2}$$
$$\Sigma = \left[ p_{id} \left( \mu^* - U(n^{id}) - pv_0 - \alpha \Sigma s_0 \right) + p_{int}(n^{id}) \right] R$$

• **Parameters**:  $g_{\sigma}$ ,  $g_{\omega}$  and  $C_d$  – properties of normal nuclear matter  $\alpha$  – widest range of causality (next slide) R – flow constrain on nuclear matter FoS

#### Causality of Walecka model at T = 0

• Quantum virial coefficients of hard spheres are not known  $\Rightarrow \alpha$  has to be fixed from the widest causality range condition



 $\alpha = 2.141$  provides widest range of causality in quantum case  $(n_{lim} = 3.5n_0 \text{ at } U = 0 \text{ and } n_{lim} = 6.5n_0)$ 

#### Excluded volume per particle at T = 0

• Packing fraction  $\eta = n \cdot \frac{4}{3} \pi R^3$ 



 $\alpha = 2.141 \text{ corresponds to softest EoS (even without attraction)}$   $\mathbf{v}_{\text{excl}} \text{ is defined only by } \alpha$ 

Motivation EoS with Induced Surface Tension Applications

#### EoS at T = 0



Flow constrain is fulfilled at  $K_0 = 210 MeV$ 

### Hadron Resonance Gas

- Hadrons with masses  $\leq$  2.5 GeV (widths, strong decays, zero strangeness)
- Hard-core repulsion is accounted within the IST framework, no explicit attraction
- $\bullet$  111 independent particle ratios measured at 14 energies from 2.7 to 200 GeV/A
- 14 × 4 local parameters ( $T, \mu_B, \mu_{I3}, \gamma_s$ ) + 5 global parameters (hard core radii)



# $K^+/\pi^+$ and $\Lambda/\pi^-$ ratios

• Even the most problematic ratios are under description now



## Hadron Resonance Gas at ALICE energies

- 11 independent particle yields
- 1 parameter temperature (5 hard core radii were fixed before)
- Overal  $\chi^2/dof \simeq 1.038$
- Freeze out temperature  $T_{FO} = 154 \pm 7 \ MeV$



# Conclusions

- Multicomponent EoS in Grand Canonical Ensemble
- Virial coefficients of Boltzmann hard spheres
- Quantum Statistics
- Ground state of normal nuclear matter
- High quality description of particle yields measured in A+A collisions
- Wide range of causality
- Flow constrain on nuclear matter equation of state

# Thank you for attention